

Differentiable Simulations

DEEP LEARNING FROM AND WITH NUMERICAL PDE SOLVERS (PART 2)

Contents

Physical Loss Terms

Differentiable Physics Simulations

- Examples

Differentiable Physics Training

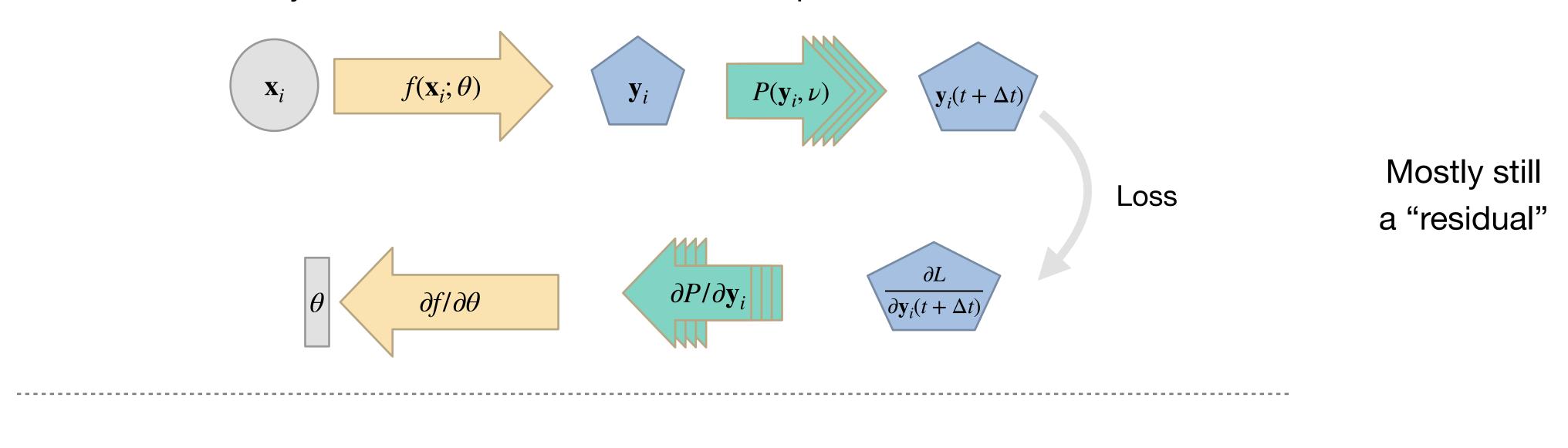
- Examples

Differentiable Physics for Deep Learning

Starting with Combination Possibilities

Many different combinations beyond NN f \rightarrow solver $\mathscr{P} \rightarrow loss L$ possible

 $P(\mathbf{x}_i, \nu)$



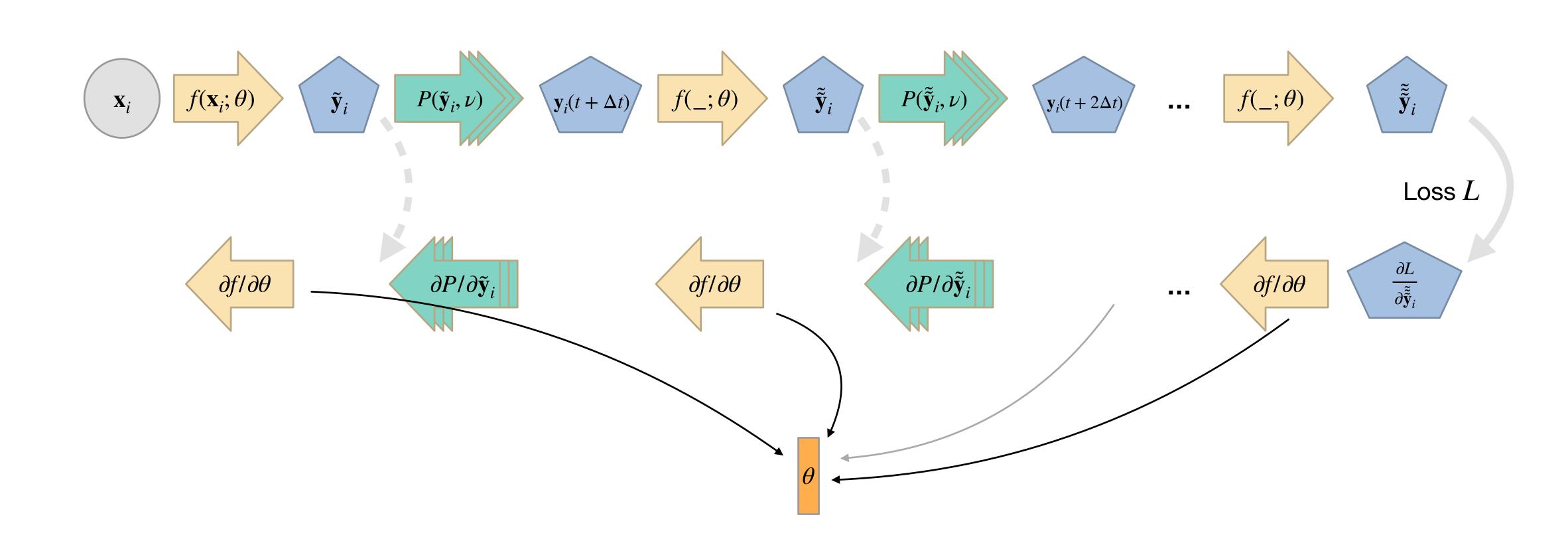
 $f(\tilde{\mathbf{x}}_i; \theta)$

"On-the-fly" simulation (No solver derivative needed)

Loss

Both not too interesting, better: freely combine...

Starting with Combination Possibilities



Re-cap Notation

- Ground truth denoted by *
- Learning goal: approximate $f^*(x) = y^*$
- Data set (x_i, y_i^*)
- Training: $\arg\min_{\theta}|f(x;\theta)-y^*|_2^2$
- Physical quantity, such as flow field, denoted by $\mathbf{u}(t)$
- Bold to indicates vectors, e.g., $(\mathbf{x}_i, \mathbf{y}_i^*)$, the rest is equivalent...

An Attempt at Categorization

Target time series (transient problems). Distinguish main steps of the form:

- Correction task: $\mathbf{x}_{\text{new}} = \mathcal{P}(f(\mathbf{x}; \theta), \nu)$
- Prediction task: $\mathbf{x}_{\text{new}} = f(\mathbf{x}; \theta)$, i.e., $\mathcal{P} := Id$

Both could be applied autoregressively (== iteratively) over time

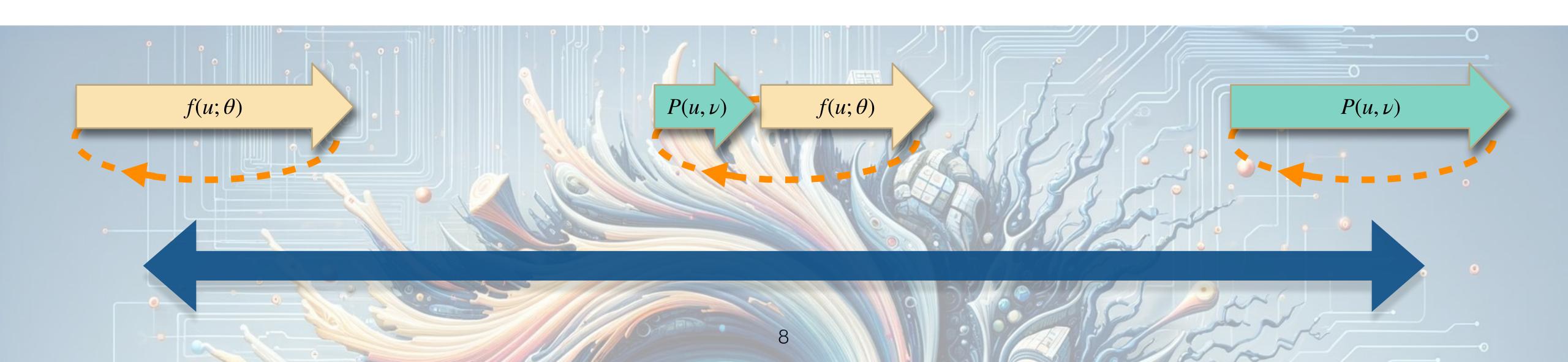
Denote with $g(\mathbf{x}) := \mathcal{P}(f(\mathbf{x}; \theta), \nu)$ for correction, $g(\mathbf{x}) := Id(f(\mathbf{x}; \theta))$ for prediction

Recursive application s times: $g^{s}(\mathbf{x})$

An Attempt at Categorization

Tasks as continuum:

- Perfect simulation → nothing left to do
- Pure **prediction** → no solver involved (only recurrent NN)
- Correction → hybrid simulator, numerics plus NN



Learning "Correctors"

Hybrid / Neural Solvers, Differentiable Physics (DP)

Neural network $f(\mathbf{x}_i; \theta)$ and simulator are evaluated multiple times, $\mathbf{u}(t_j) = g^s(\mathbf{u}(t_{j-1}))$ with $t_j = t + j\Delta t$

For s steps, with $\mathbf{x}_i = \mathbf{u}(t)$, $\mathbf{y}_{i,s}^* = \mathbf{u}^*(t + s\Delta t)$

Subtleties of correction alternatives, the interna of f in with NN component NN $_{ heta}$:

Version 1: NN generates full state via $f(\mathbf{x}; \theta) := NN_{\theta}(\mathbf{x})$

Version 2: Residual via operator "o": $f(\mathbf{x}; \theta) := \mathsf{NN}_{\theta}(\mathbf{x}) \circ \mathbf{x}$, e.g. e.g. additive interaction: $\circ := +$

In comparison:

- → Version 1 can be more stable (no temporal "drift")
- → Version 2 typically much simpler task for NN

Learning "Correctors"

Hybrid / Neural Solvers, Differentiable Physics (DP)

Modified state **u** at later time influenced by previously modified steps

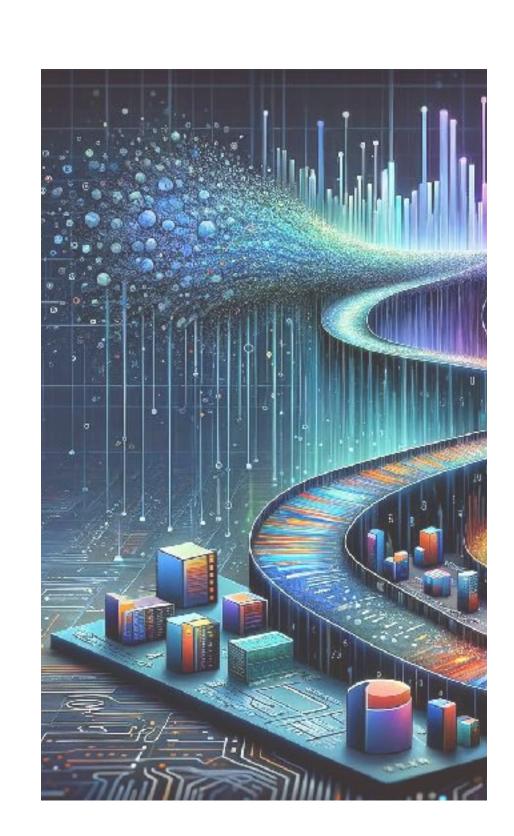
Solver alone does not immediately produce the correct answer: $\mathbf{u}^*(t + s\Delta t) \neq \mathscr{P}^s(\mathbf{u}(t))$

Outputs differ from input $\mathbf{u}(t+s\Delta t)\neq g^s(\mathbf{u}(t))$, and from reference $\mathbf{u}^*(t+s\Delta t)\neq g^s(\mathbf{u}(t))$

Minimization for all steps
$$s$$
 of $\mathscr{L} := \sum_{s} \left| \mathbf{u}^*(t + s\Delta t) - g^s(\mathbf{u}(t)) \right|^2$

Requires back propagation through all s steps of physics solver and NN!

[Note: Similar to "regular" recurrent neural network training, but additionally involves PDE solvers]

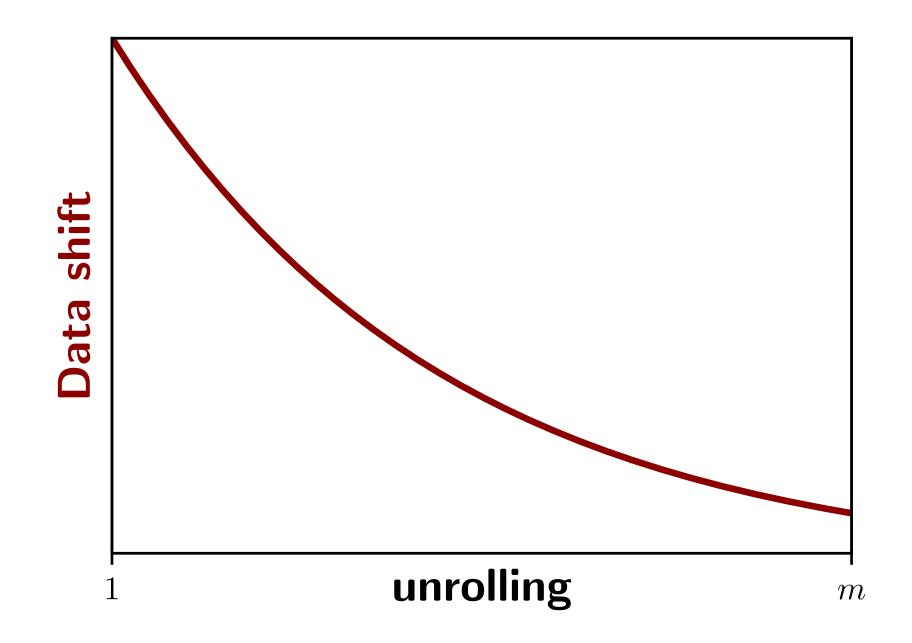


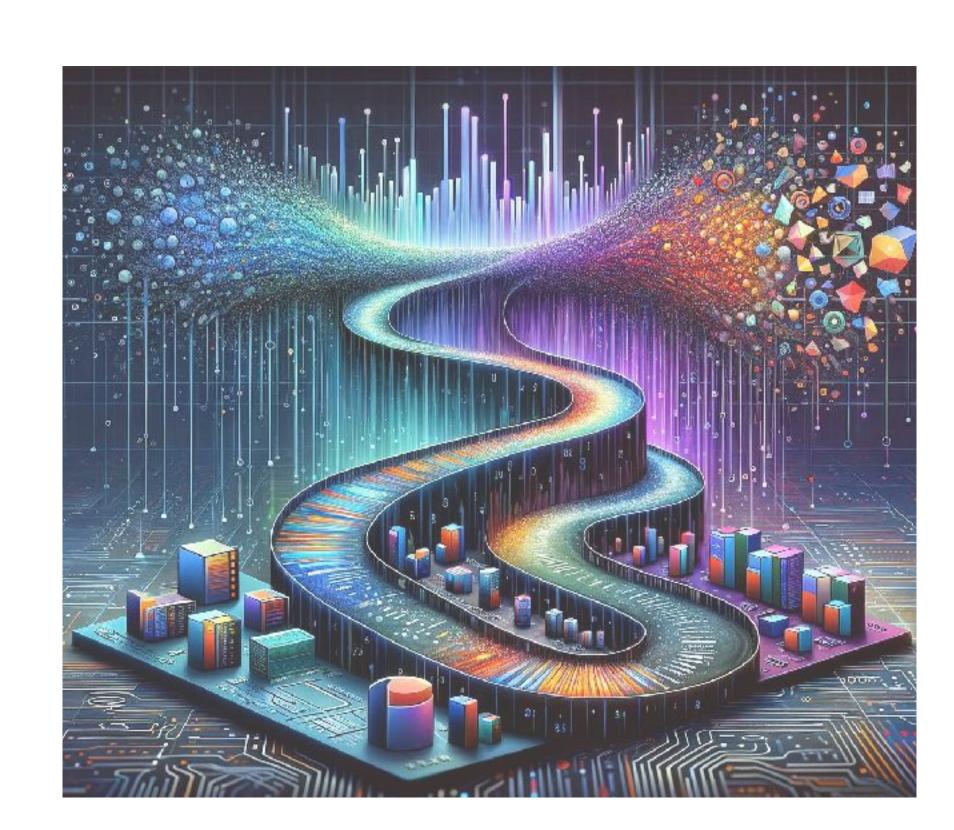
Data Shift

Changing states: classic data shift problem

Distribution of inputs changes, esp. while training!

→ The more *unrolling* the better? "Case closed"?





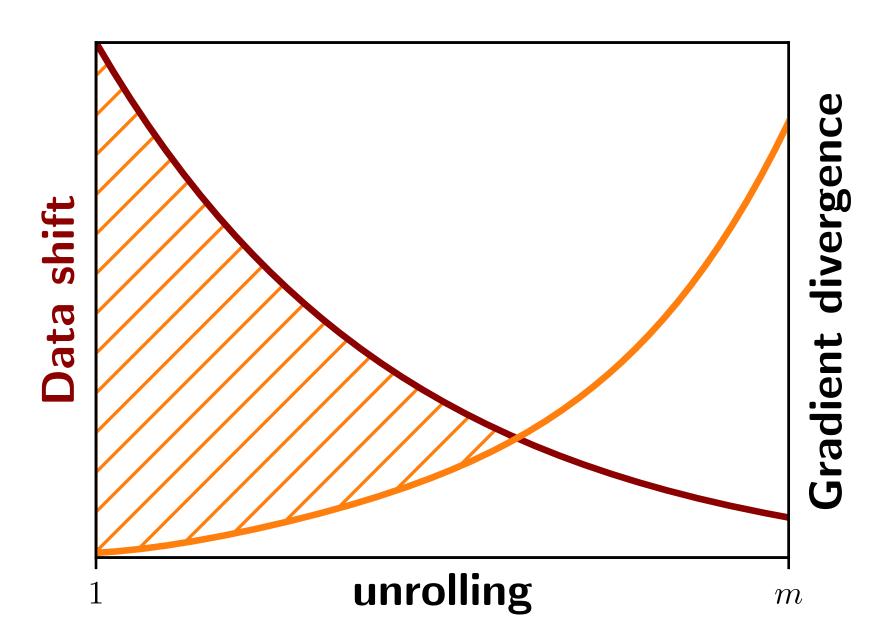
Recurrent Training

Not quite w, unrolling introduces problems:

Recurrent NN gradients can diverge

One step training:

$$\frac{\partial \mathcal{L}^1}{\partial f_{\theta}^1} \frac{\partial f_{\theta}^1}{\partial \theta}$$



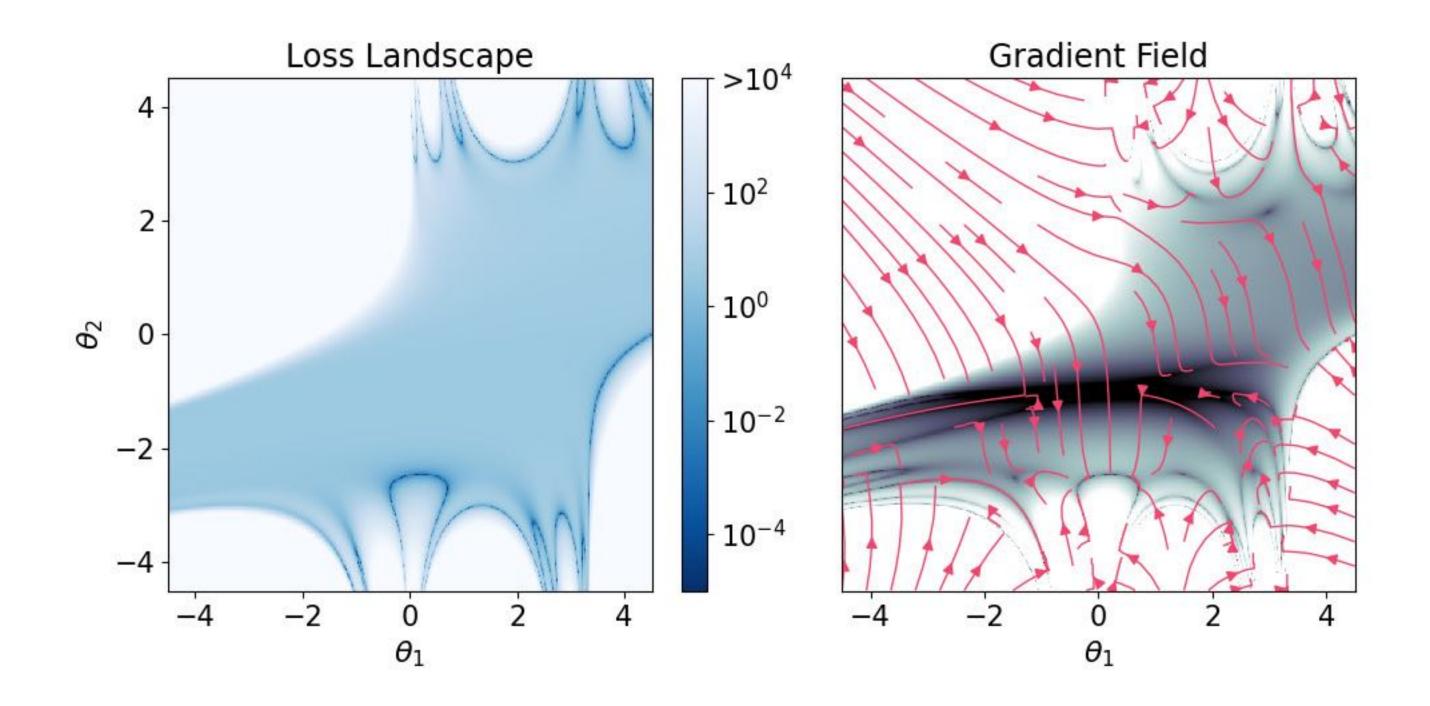
Unrolled training:

$$\sum_{S} \sum_{B=1}^{S} \frac{\partial \mathcal{L}^{S}}{\partial g^{S}} \frac{\partial g^{S}}{\partial g^{B}} \frac{\partial g^{B}}{\partial \theta}$$

Loss Landscapes

Unrolling increases complexity of loss landscape and gradients

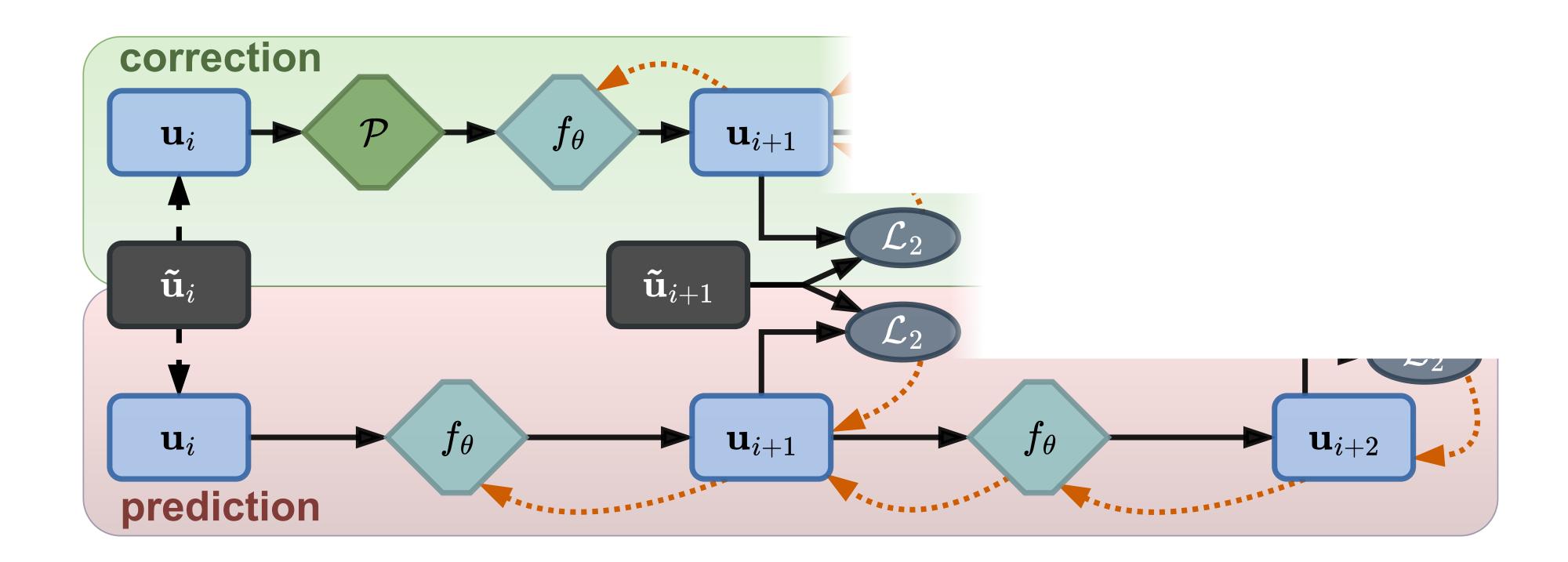
Toy example with polynomial $\mathcal{P}(x,\theta) = -\theta_1 x^2 + \theta_2 x$:



Schnell et. al: Stabilizing Backpropagation through Time for Learning Complex Physics

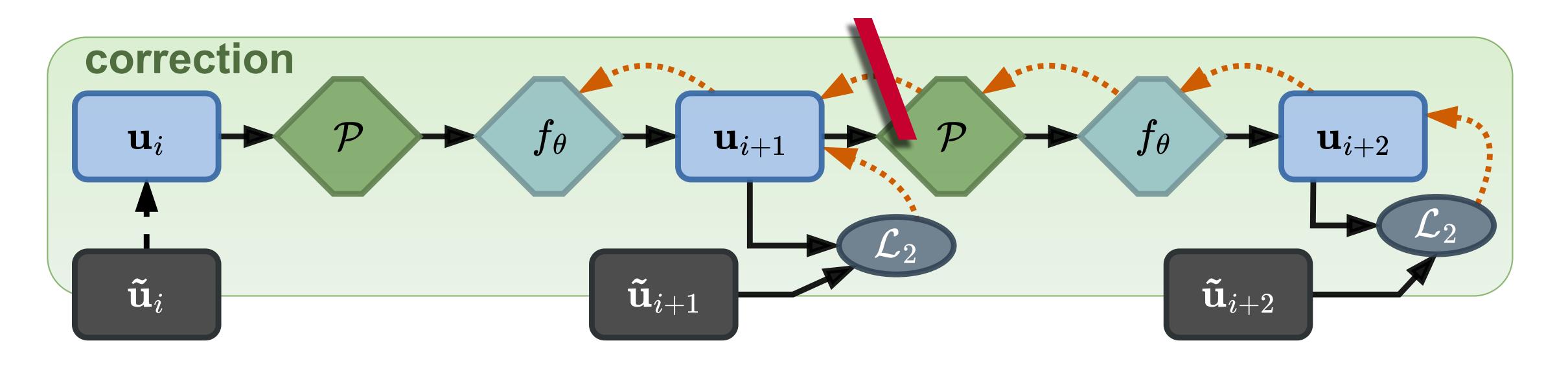
Prediction and Correction Tasks

Gradient flow visualized for states u_i :



No-gradient (NOG) Training

Alternative: train without gradient from simulator



Disentangling Contributions

How much does each part matter?

Open question so far, how much does each component contribute:

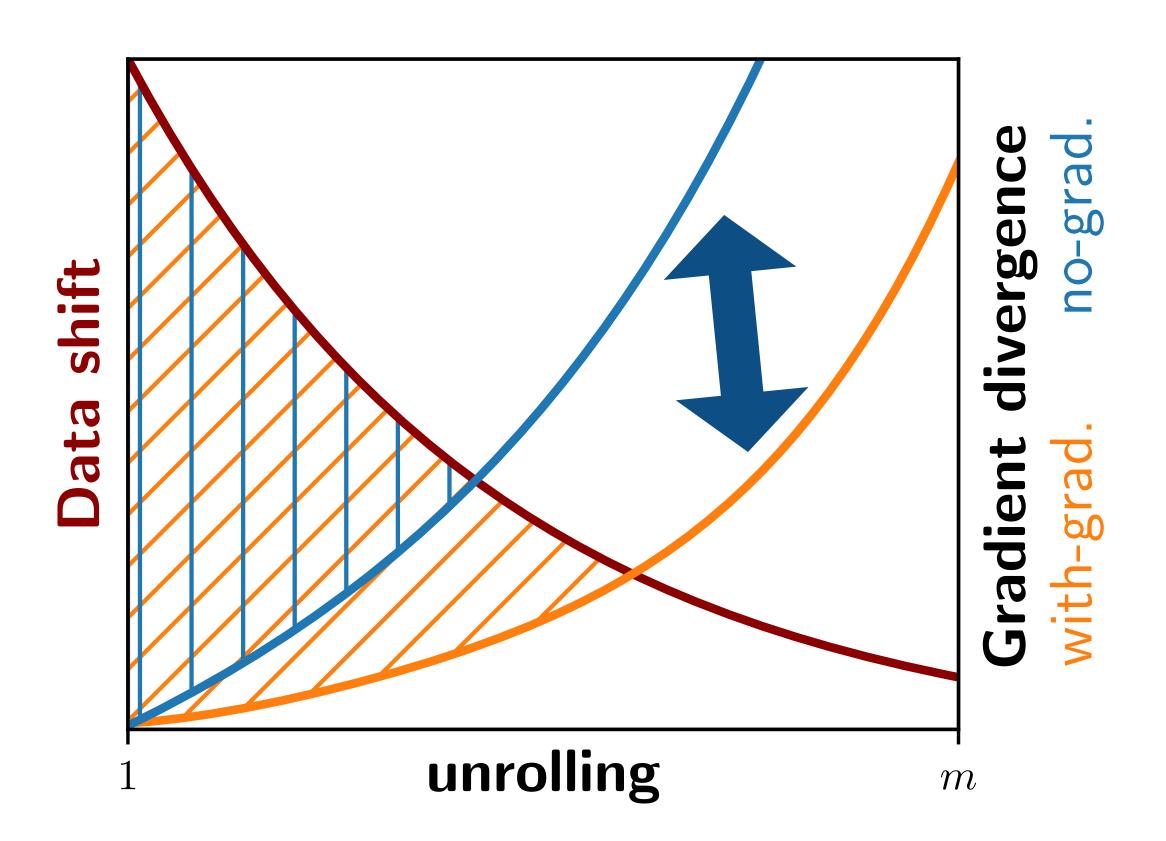
- (0) Basis: pure neural network prediction
- (1) Add non-differentiable solver (correction)
- (2) Apply unrolling (data-shift)
- (3) Backpropagate gradients ("correct" gradients)

No-gradient (NOG) Training

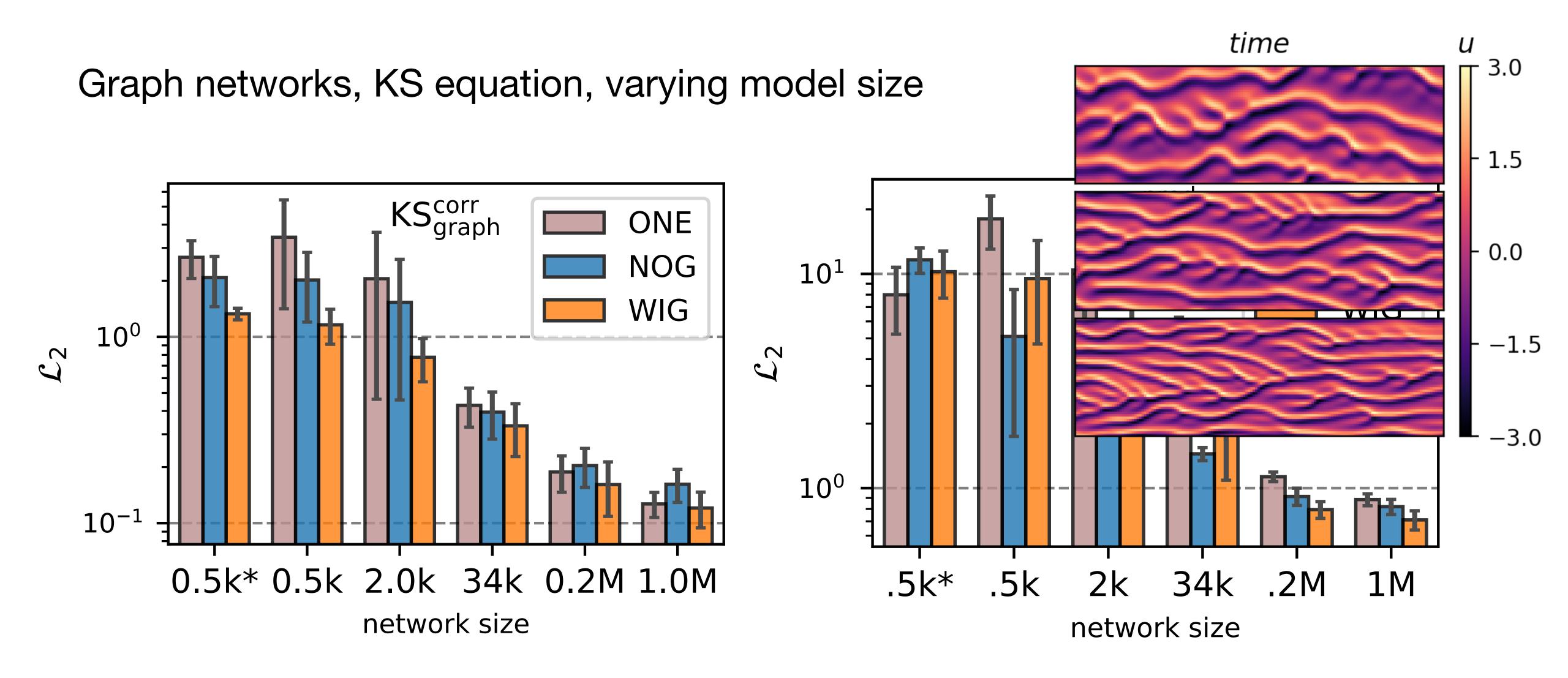
Resulting training gradient:

$$\sum_{s} \frac{\partial \mathscr{L}_{2}^{s}}{\partial f_{\theta}^{s}} \frac{\partial f_{\theta}^{s}}{\partial \theta}$$

"Worse, but can it provide benefits?"



Results

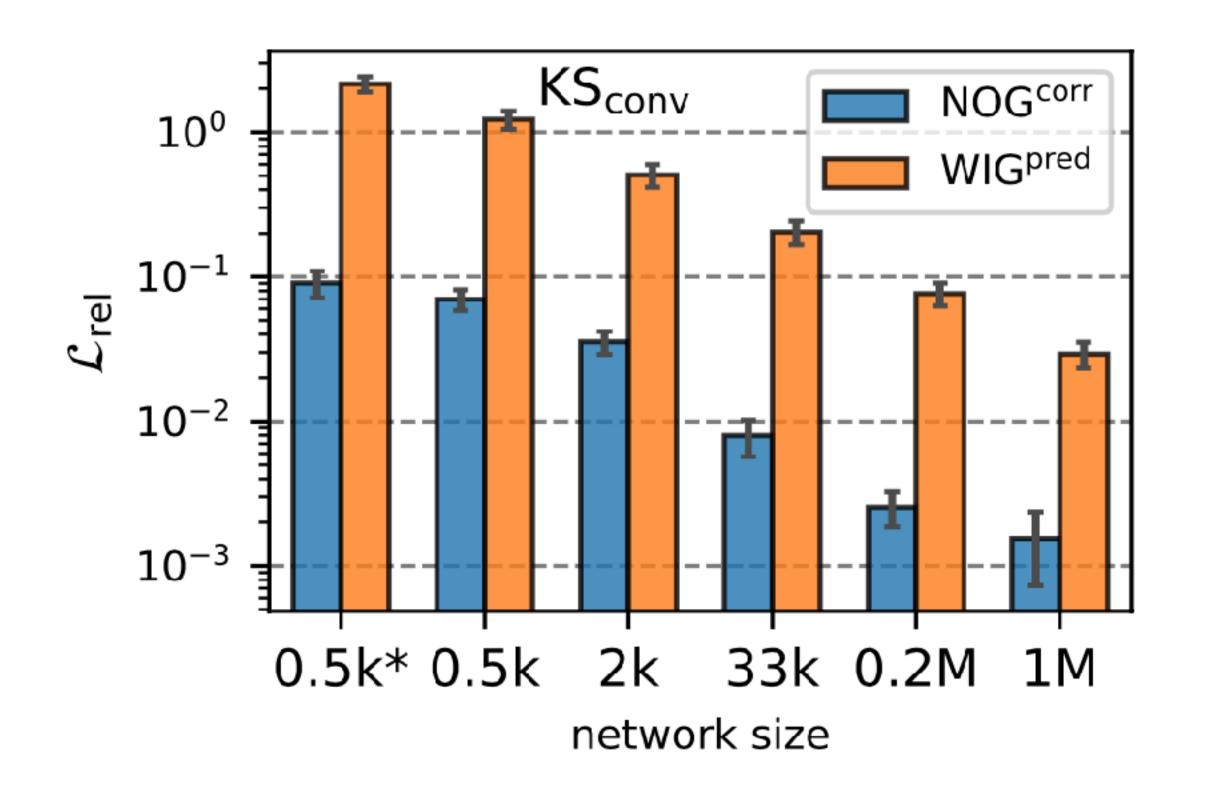


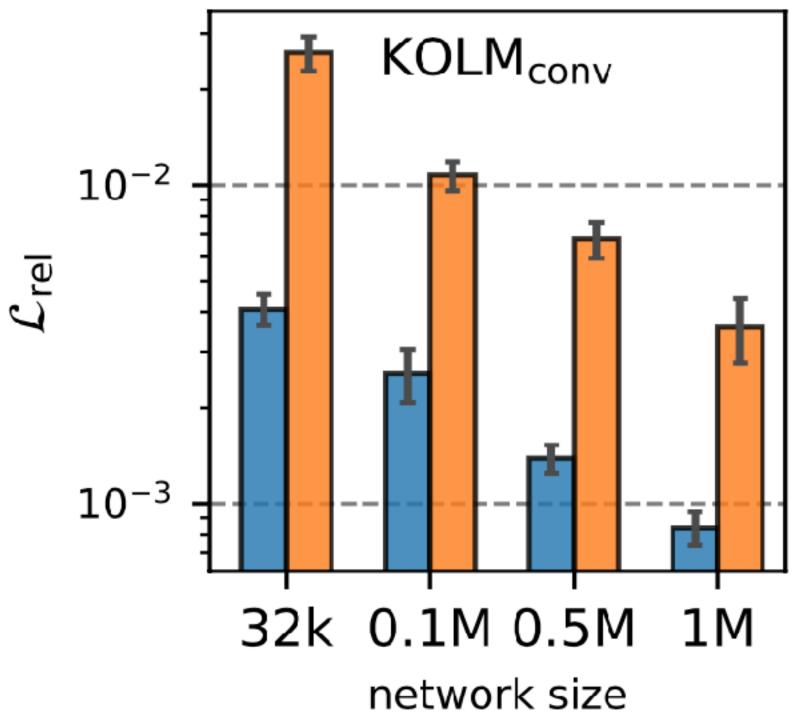
List et. al: How Temporal Unrolling Supports Neural Physics Simulators

How much to gain in practice?

Central advantage: replace prediction task by correction

→ Improve accuracy by more than 10x with an *identical* network, but slightly higher compute cost





List et. al: How Temporal Unrolling Supports Neural Physics Simulators

Disentangling Contributions

How much does each part matter?

Open question so far, how much does each component contribute:

- (0) Basis: pure neural network prediction
- (1) Add non-differentiable solver (correction) → 10x
- (2) Apply *unrolling* (data-shift) → 33%
- (3) Backpropagate gradients ("correct" gradients) → 15%

In total:

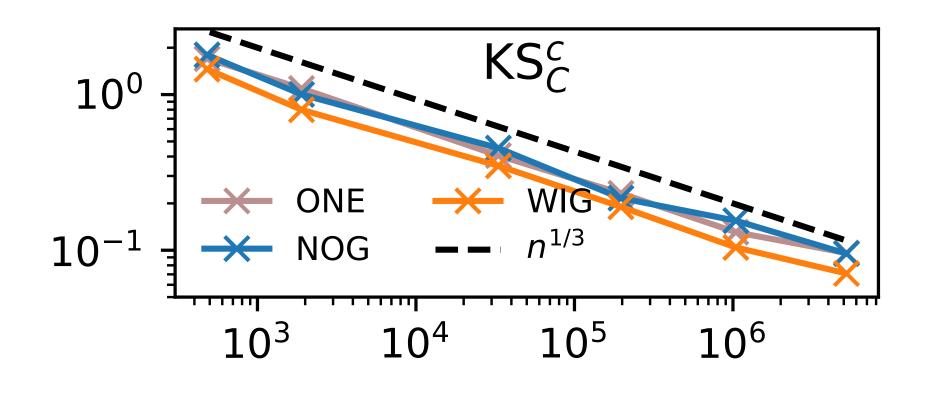
More than 15x on average

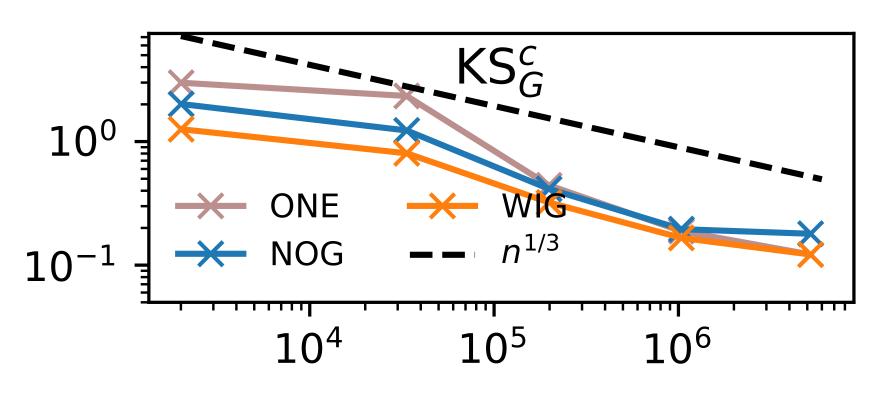
Outlook - Scaling

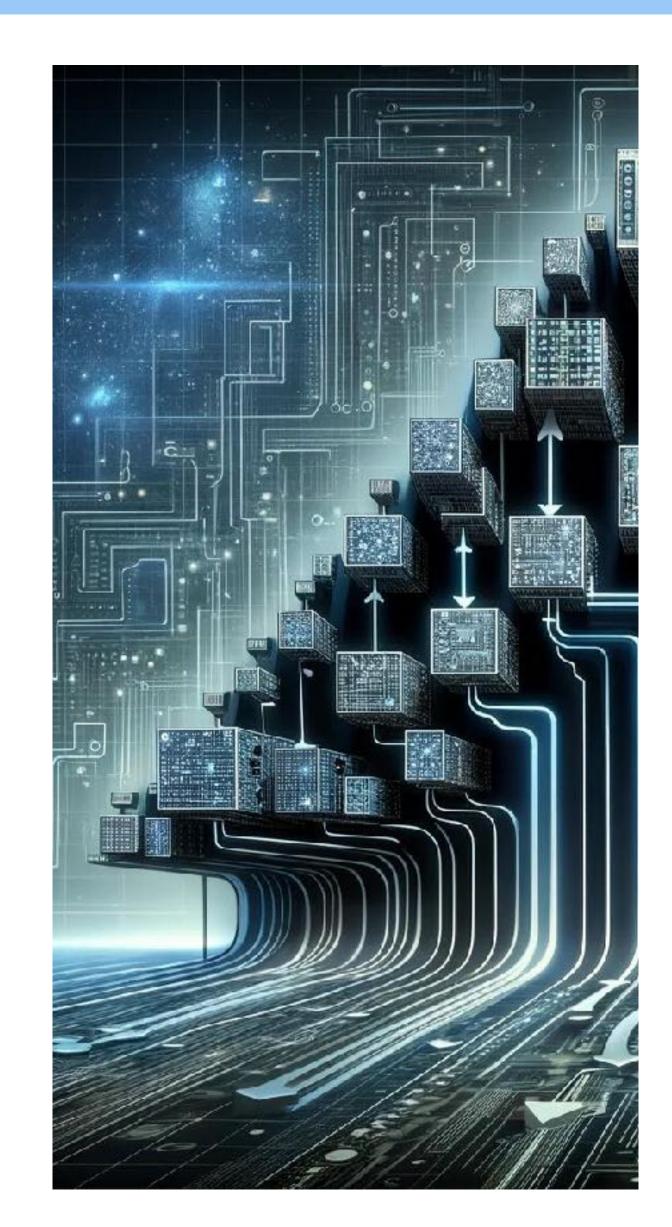
In general: suboptimal for NNs, scales with ca. 1/3

(→ "It's good to keep NN small!")

Correction tasks: let P handle large scale data shift



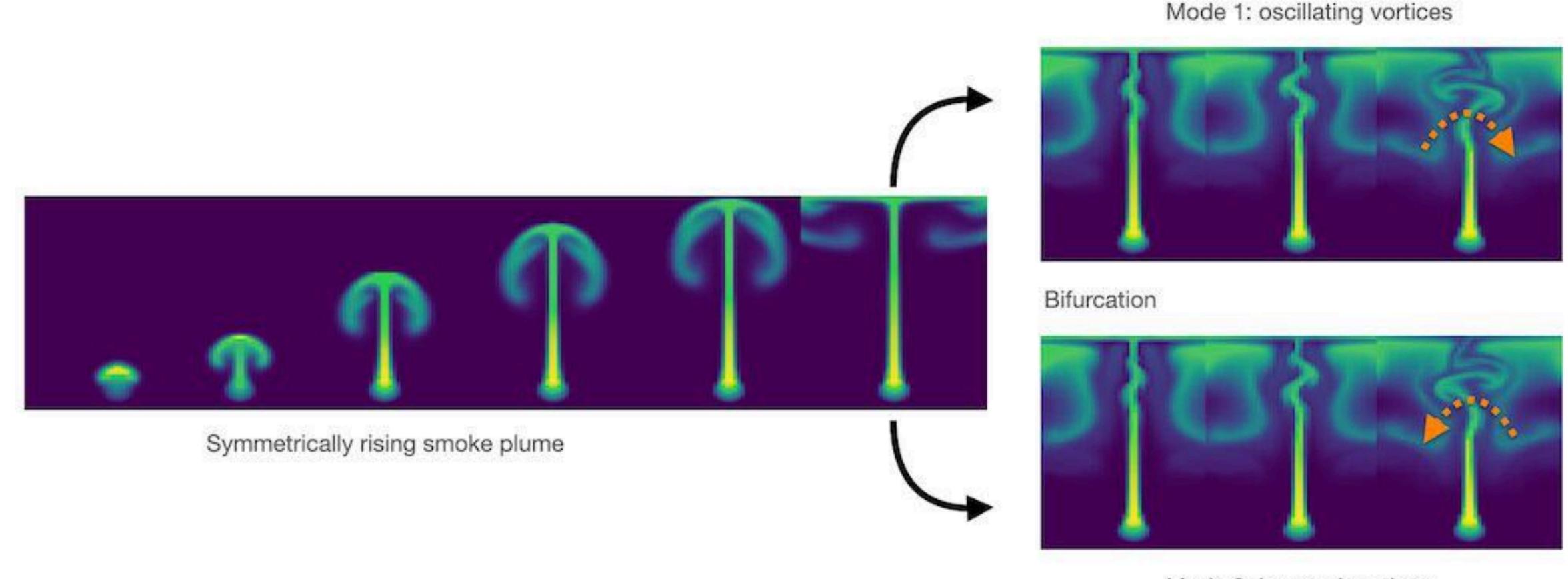




List et. al: How Temporal Unrolling Supports Neural Physics Simulators

Intuition - Multi-modal Problems

Example - Flow Bifurcation



Mode 2: inverted vortices

Intuition - Multi-modal Problems

(Advantages of full gradient over Supervised Training)

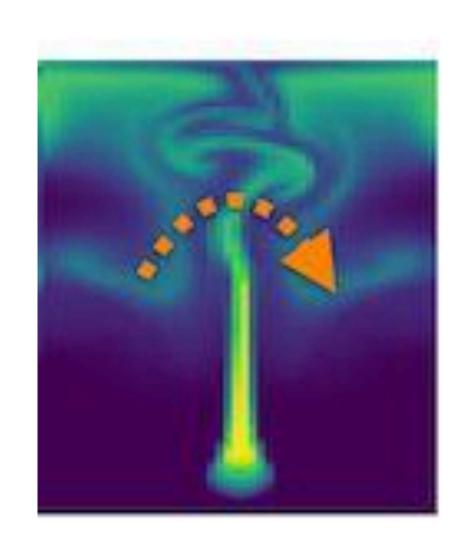
Strongly varying solutions for small changes of the input

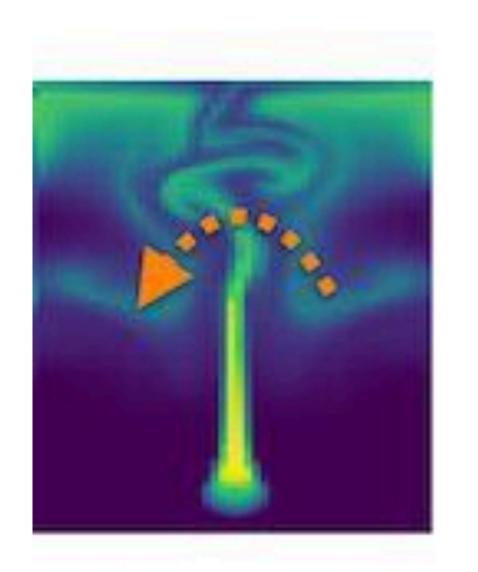
Extreme example: super-resolution problems

Cause undesirable averaging for supervised training

Differentiability can yield gradients for current state

⇒ No averaging, single gradient provided





Summary so far

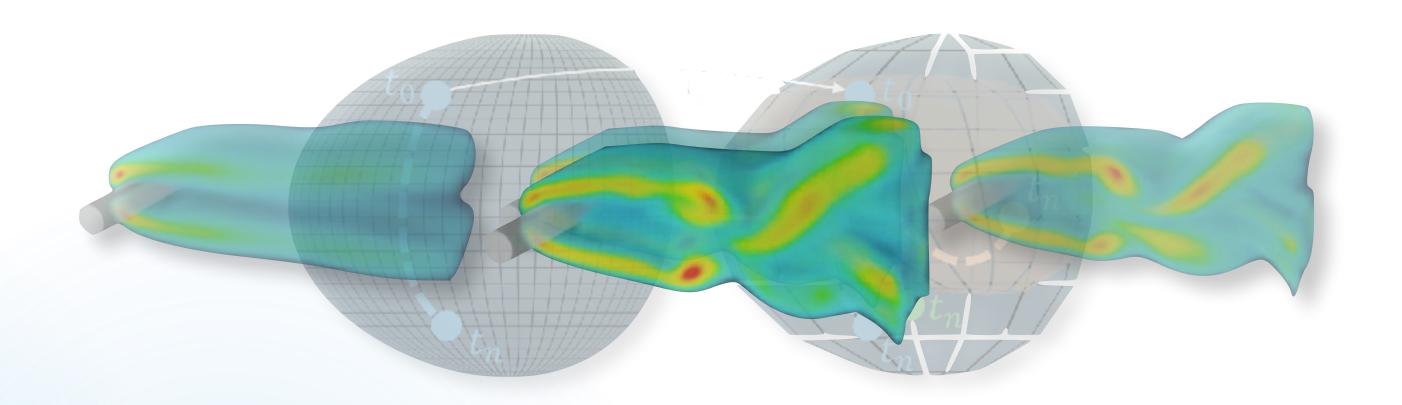
Neural PDE Solvers

Most generic form of coupling: *arbitrary* combination and repetition

 \Rightarrow Neural network now works *alongside* \mathscr{P} to produce the right answer

Reference states y* can be from external & non-differentiable solver

Could also be obtained from experiments



Differentiable Simulations

DEEP LEARNING FROM AND WITH NUMERICAL PDE SOLVERS (PART 3)

Contents

Physical Loss Terms

Differentiable Physics Simulations

- Examples

Differentiable Physics Training

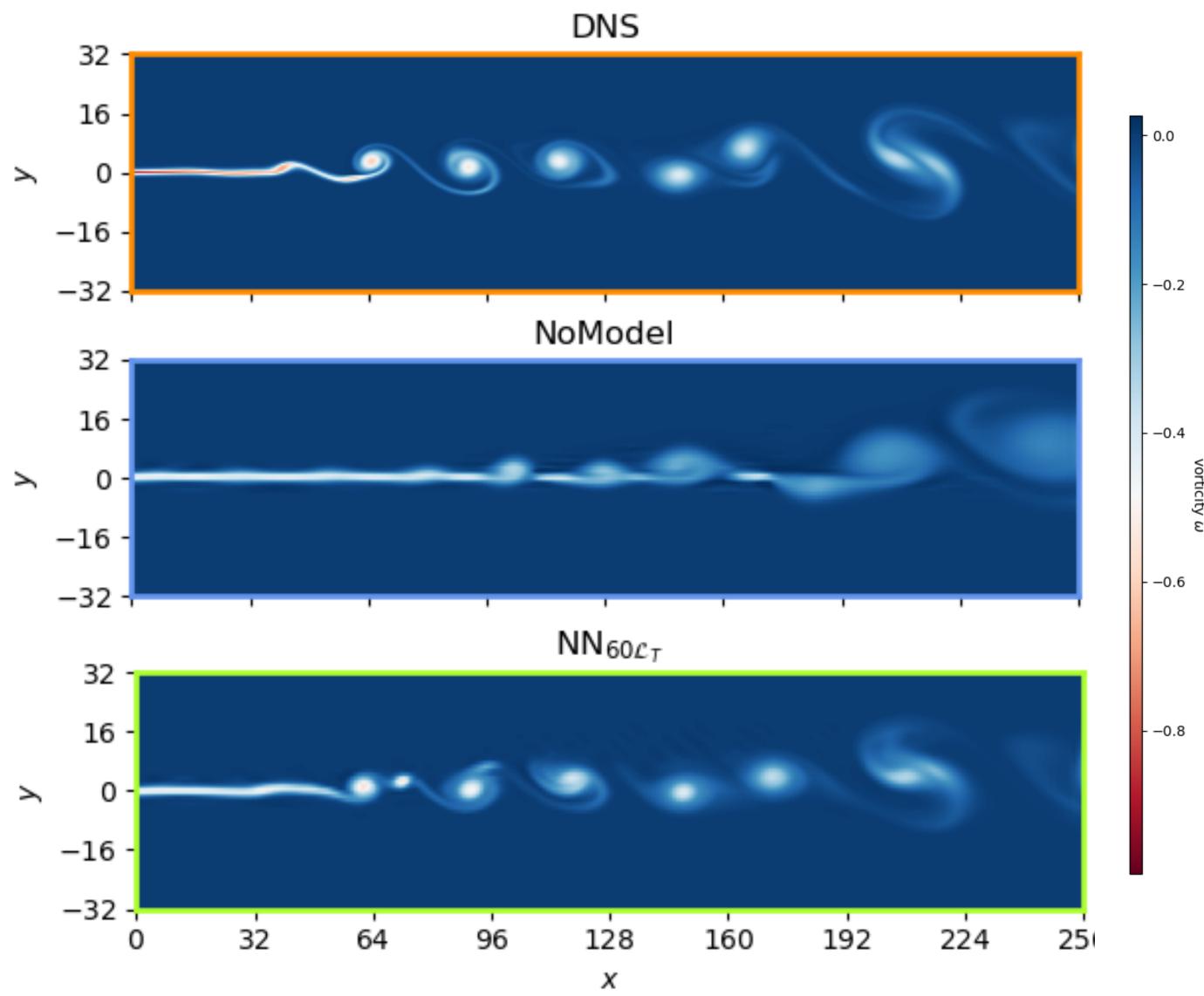
- Examples

Differentiable Physics Example 1

List et. al: Learned Turbulence Modelling with Differentiable Fluid Solvers

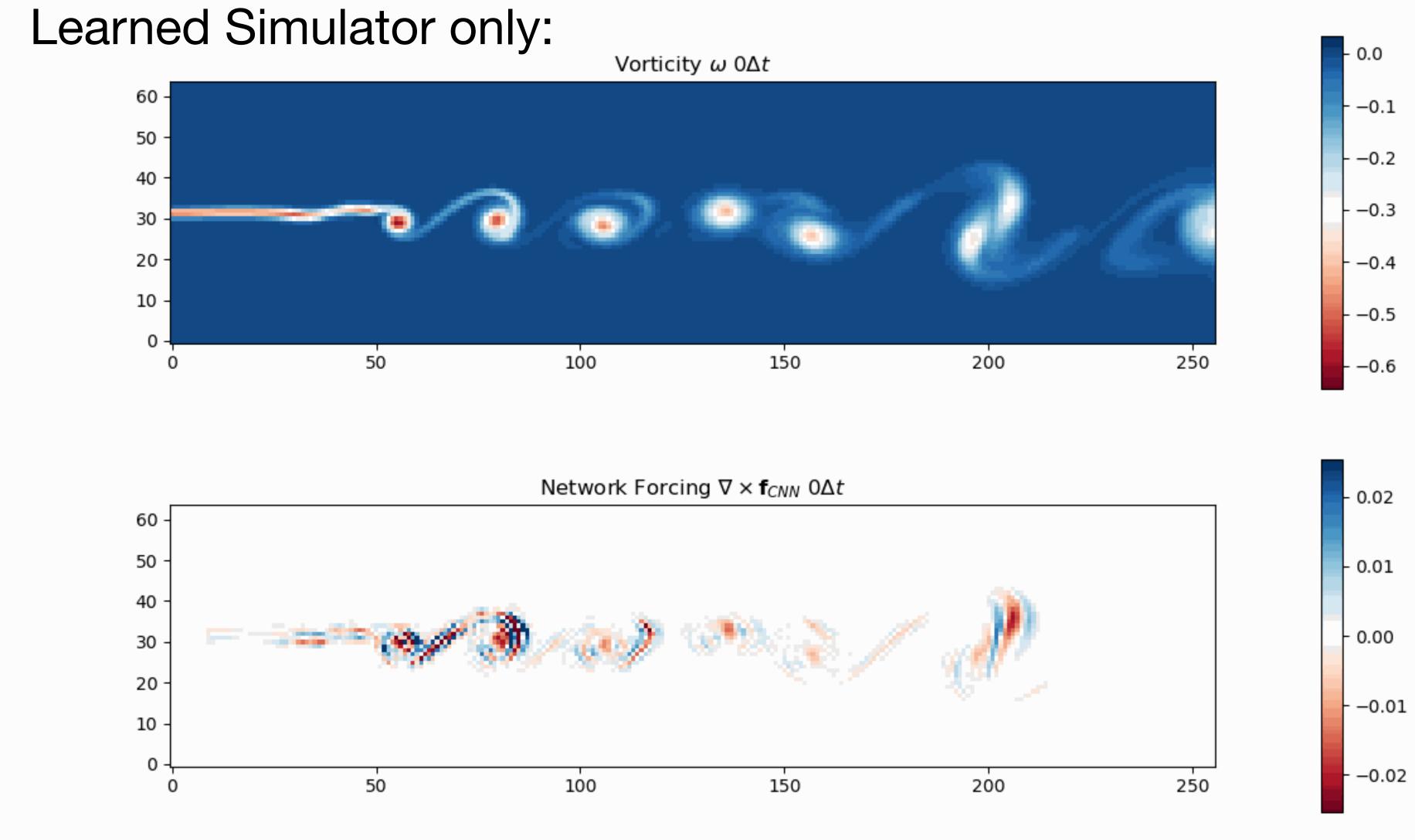
Turbulence: Spatial Mixing Layer

- Semi-implicit PISO solver
 (2nd order in time)
- Shear layer with vorticity thickness Re = 500
- Evaluate on test set of unseen perturbation modes



List et. al: Learned Turbulence Modelling with Differentiable Fluid Solvers

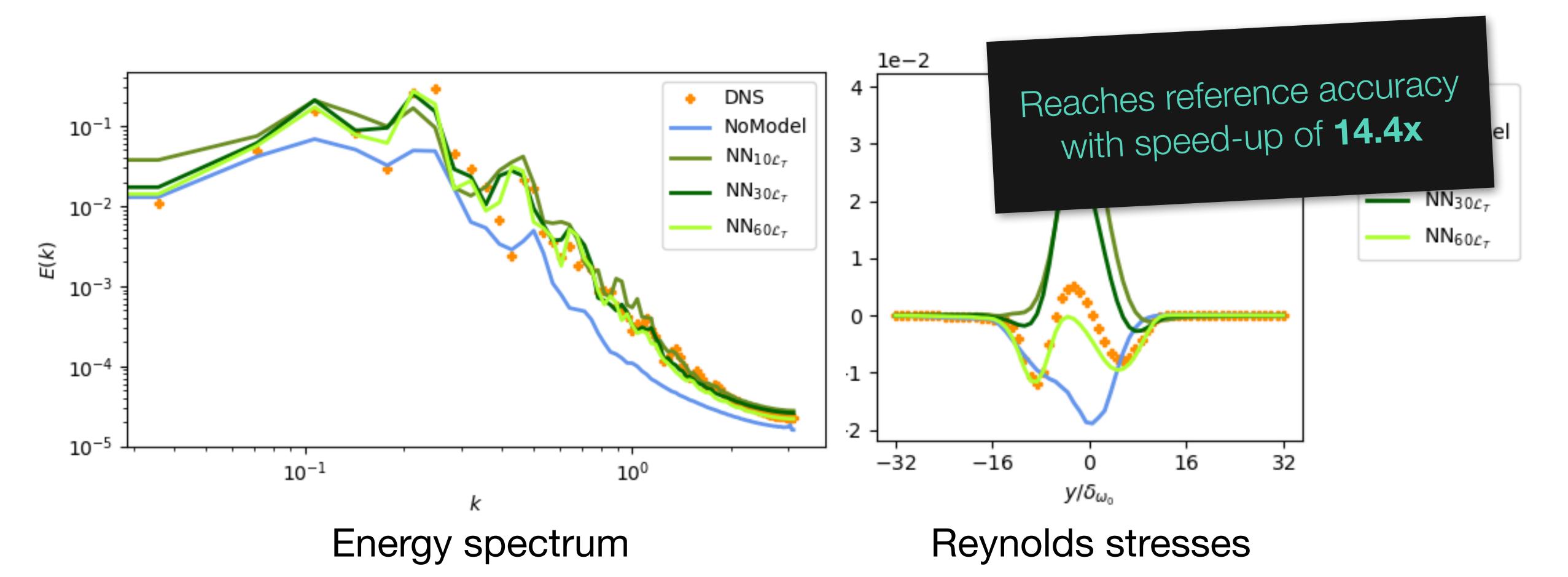
Turbulence: Spatial Mixing Layer



List et. al: Learned Turbulence Modelling with Differentiable Fluid Solvers

Turbulence: Spatial Mixing Layer

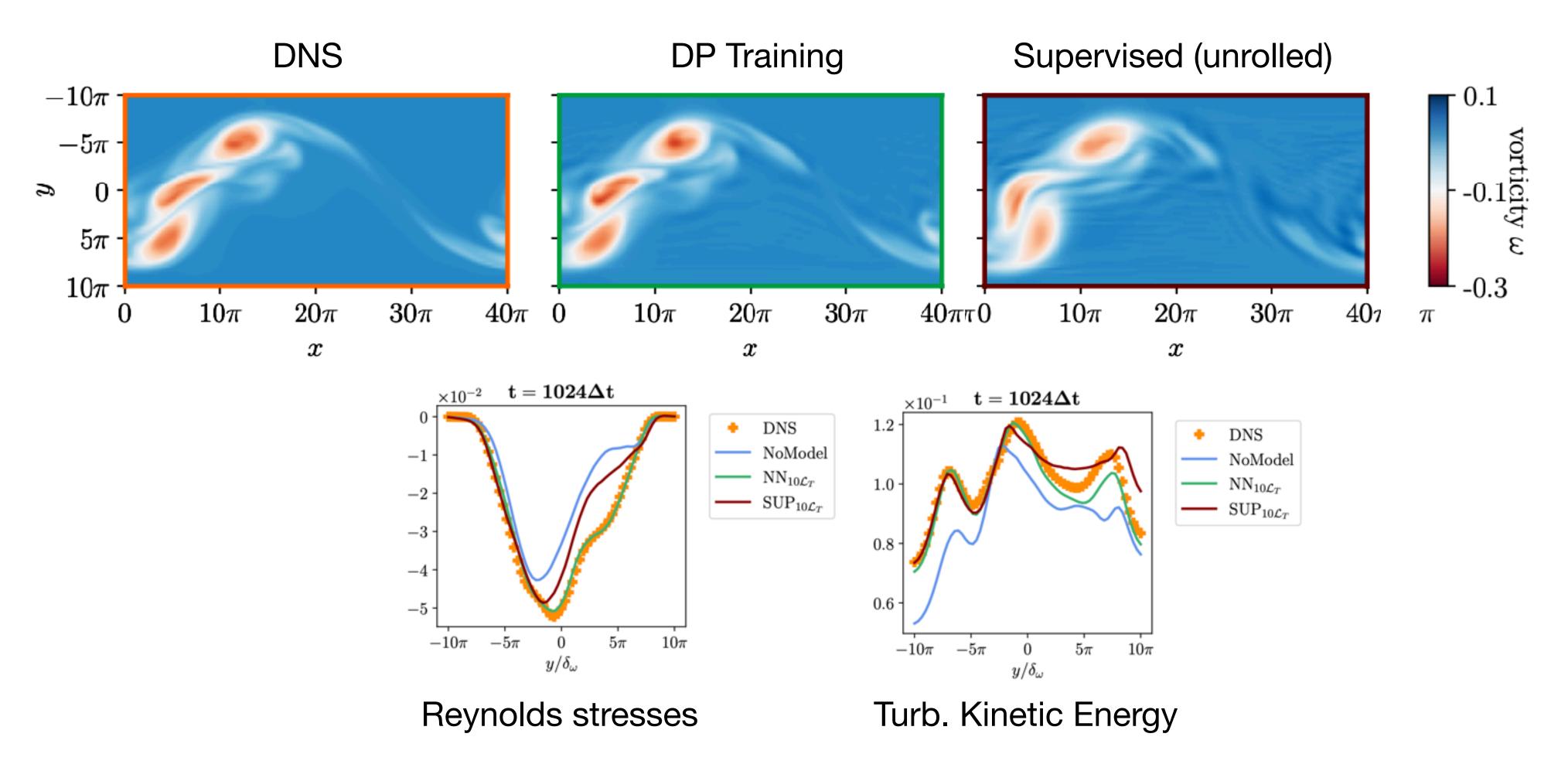
Closely matches DNS turbulence statistics (steady state over 2500 steps)



List et. al: Learned Turbulence Modelling with Differentiable Fluid Solvers

Turbulence: Temporal Mixing Layer

10 step unrolling, without and with DP training



List et. al: Learned Turbulence Modelling with Differentiable Fluid Solvers

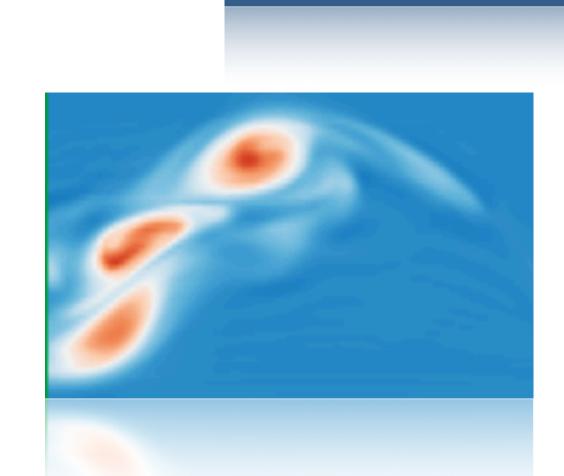
Turbulence Cases - Discussion

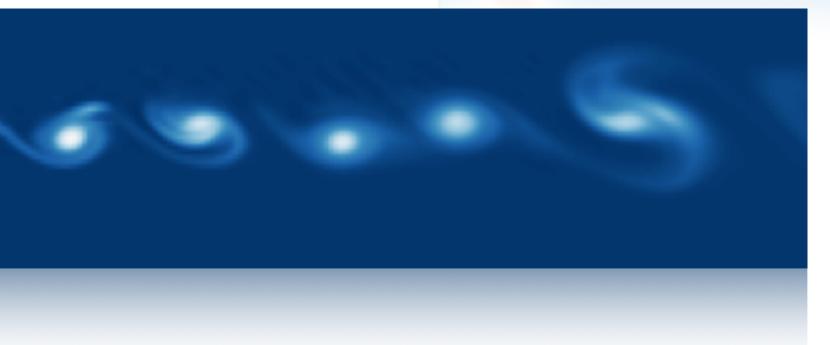
Illustrates importance of (long-term) DP training

Significant gains in accuracy per resource possible

Unrolled supervised training performs worse

⇒ Long term feedback (gradient flow) crucial



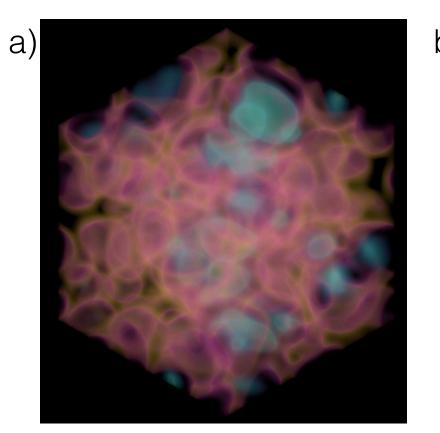


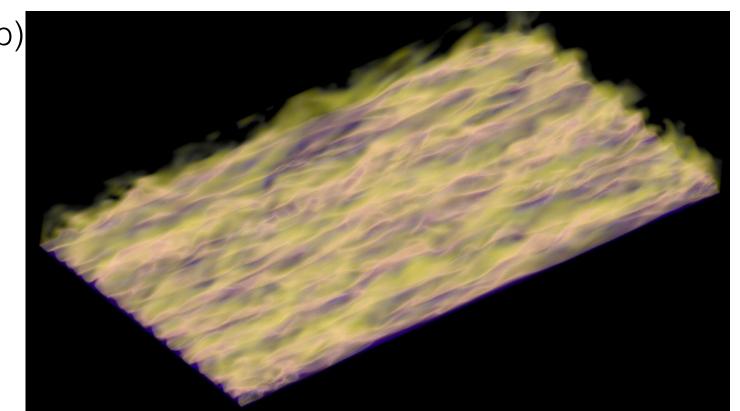
Differentiable Physics Example 2

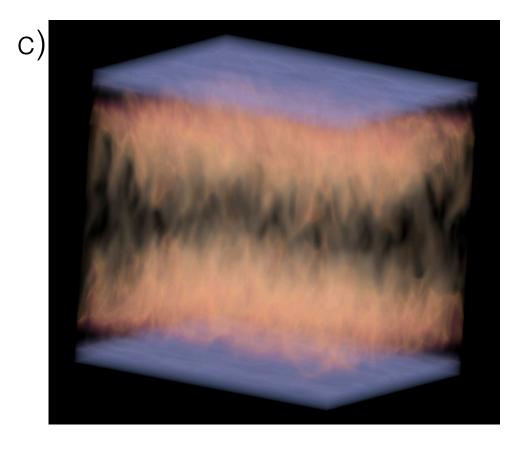
Franz et. al: PICT - A Differentiable, GPU-Accelerated Multi-Block PISO Solver for Simulation-Coupled Learning Tasks in Fluid Dynamics

More Advanced Solver

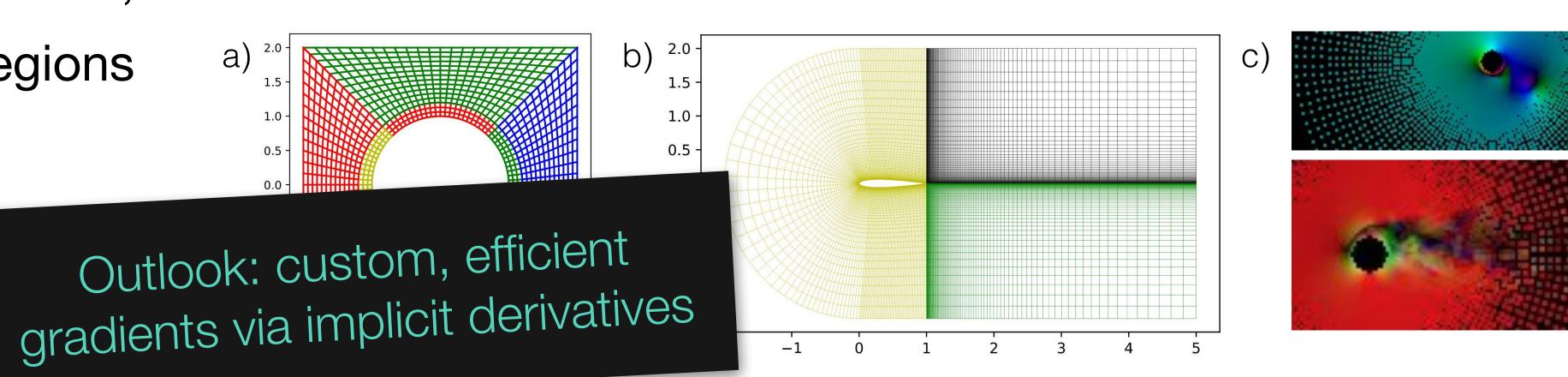
Higher order,
 supports 3D
 simulations







Adaptive meshes,
 refine near regions
 of interest

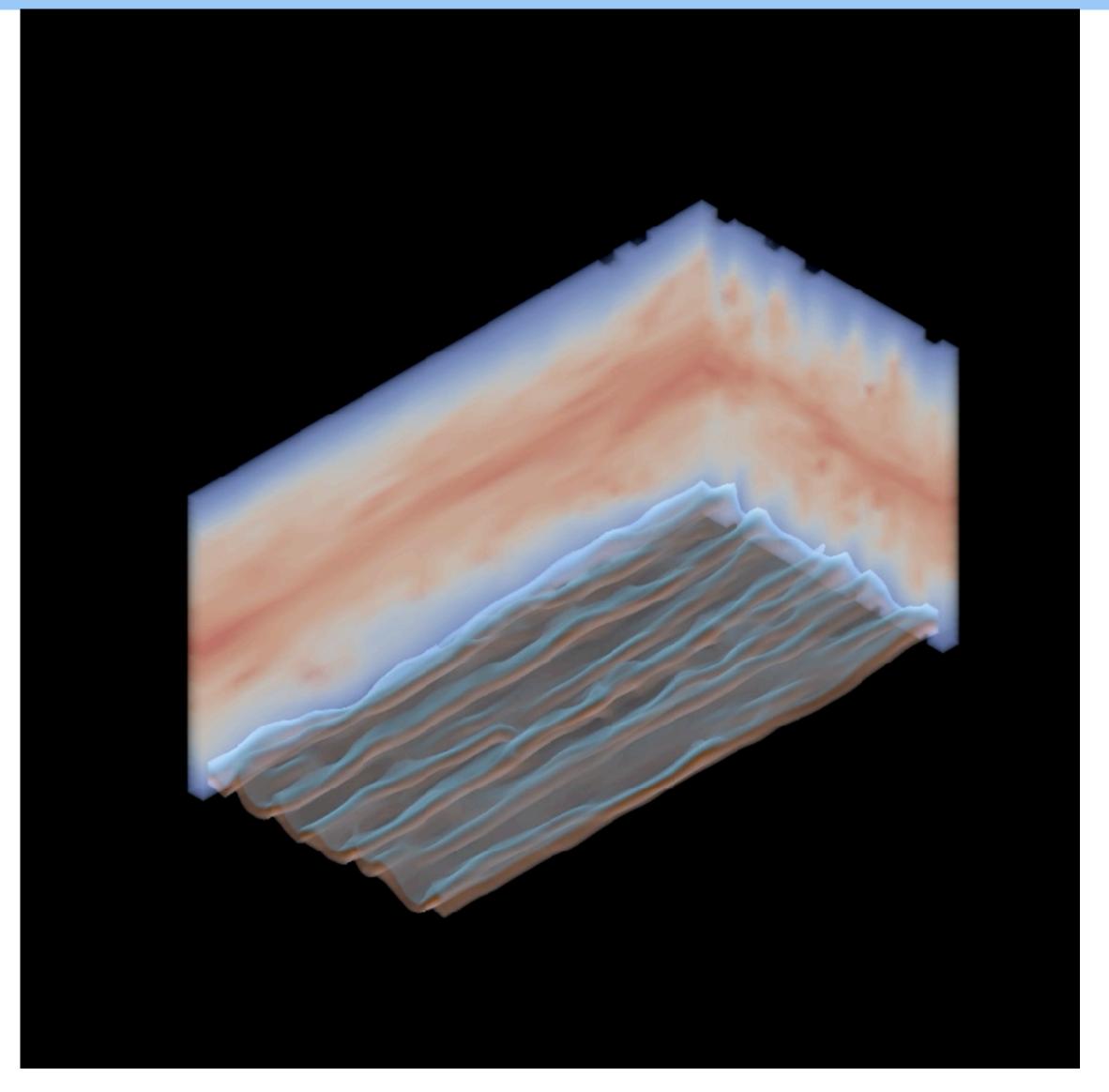


Training Turbulence Closure

Chaotic systems: state supervision problematic in the long term

⇒ Supervise turbulence statistics

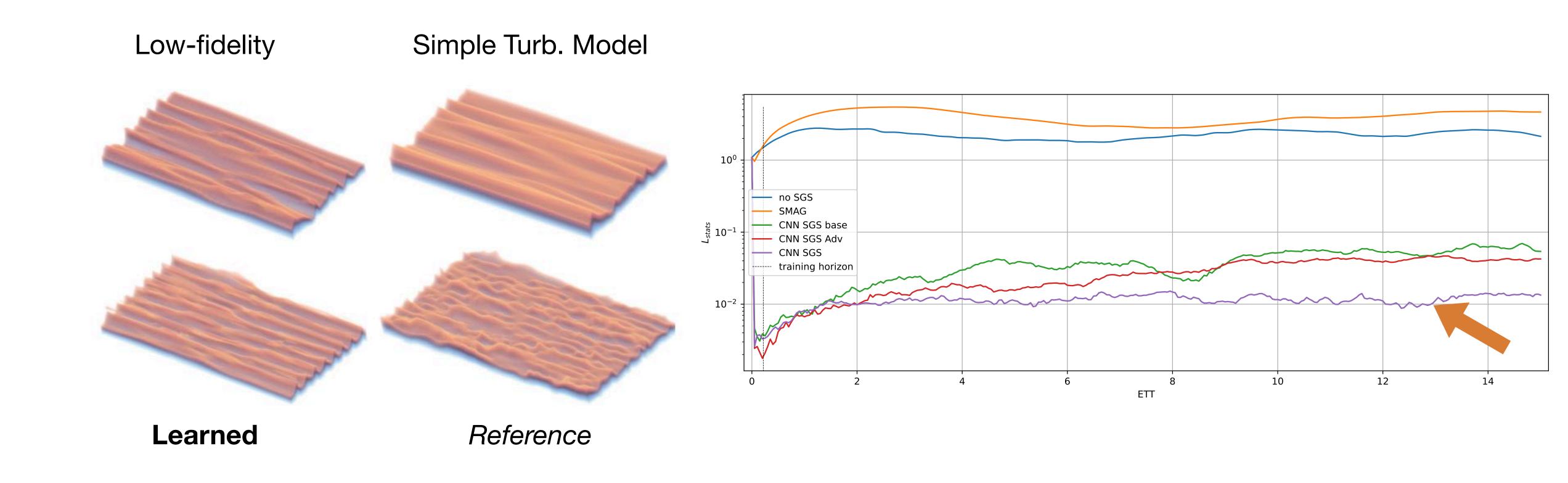
In this case from high-fidelity spectral solver



Turbulent Channel Flow

Example States

Turbulence Statistics over Time



Differentiable Physics Examples Done

Differentiable Physics Training

Summary

- Fully uses solvers, existing methods and guarantees
- TEfficiency and accuracy carries over
- Improved accuracy and generalization
- X Needs solver support
- X Higher bar for entry...

End